If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144p^2-100=0
a = 144; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·144·(-100)
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{57600}=240$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-240}{2*144}=\frac{-240}{288} =-5/6 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+240}{2*144}=\frac{240}{288} =5/6 $
| 12a+60=5a+26 | | 3(8)+1c=38 | | 12a=+60=5a+26 | | 3r+15+5r-27=90 | | 0.53•k=3.498 | | x15+1/3=30 | | 2x+2(x-8)=8x-6(x-10) | | 5n-3=-13 | | -1/3x=-18 | | -162=14k | | -2(x-9)=-x-9 | | 6n-2+4n=8n | | 3+-1k/3=4 | | 9=3+2/5x | | 6x+9=2x+4 | | 3x+25=7x+4 | | 2x-2(8+8x)=-114 | | 10=25x×85 | | k/2+-9=-12 | | −10=3x+2 | | /−10=3x+2 | | 2/3x+14=-10 | | 3x+4=18+1x | | 13(y+3=13y+39 | | -2(3x+2)=24 | | 5(2b-8)=-3(3+b)+8 | | (3/2)y=18 | | 5x+7=9x+4 | | 7n=4n-15 | | 0.66666666666(3x+9)=−2(2x+6) | | 8(x+7)+9=8x+2 | | 92g+6)4g-15=2 |